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The attempt to find effective algorithms for calculating the topological entropy 
of piecewise monotone maps of the interval having more than three monotone 
pieces has proved to be a difficult problem. The algorithm introduced here is 
motivated by the fact that if f :  [0, 1 ] ~ [ 0, 1 ] is a piecewise monotone map of 
the unit interval into itself, then h(f)  = lim._. = (l/n) log Var(f"), where h(f)  is 
the topological entropy off, and Var(f") is the total variation off". We show 
that it is not feasible to use this formula directly to calculate numerically the 
topological entropy of a piecewise monotone function, because of the slow con- 
vergence. However, a close examination of the reasons for this failure leads 
ultimately to the modified algorithm which is presented in this paper. We prove 
that this algorithm is equivalent to the standard power method for finding 
eigenvalues of matrices (with shift of origin) in those cases for which the func- 
tion is Markov, and present encouraging experimental evidence for the useful- 
ness of the algorithm in general by applying it to several one-parameter families 
of test functions. 

KEY WORDS: Topological entropy; algorithm; power method; Markov 
map. 

1. I N T R O D U C T I O N  

Topolog ica l  en t ropy  has been s h o w n  to be effective at  predic t ing  complex  
behav io r  in dynamica l  systems. Since it was first defined in 1965 by Adler,  
K o n h e i m  and  Mc An d rew ,  (~) m u c h  progress  has  been m a d e  in the theoret i -  
cal impl ica t ions  of  this concep t  (cf. [ 5]  and  [ 11] for example) .  However ,  
the numer ica l  ca lcula t ion  of  the e n t r o p y  for specific examples  has  p roved  
to be a difficult p roblem.  M a n y  researchers  have  p r o p o s e d  numer ica l  algo- 
r i thms for a p p r o x i m a t i n g  the en t ropy ,  m o s t  of  which  have  been  for m aps  
of  the interval.  The  seminal  p a p e r  of  M i l n o r  and  T h u r s t o n  ~~ deve loped  
the concep t  of  knead ing  sequences  for u n d e r s t a n d i n g  i te ra ted  m a p s  of  the 
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interval. In 1983, Collet, Crutchfield and Eckmann (7) proved that the 
topological entropy of a unimodal map depended only on the kneading 
sequence of its critical point, and used this to present an algorithm for 
calculating the entropy of such maps. Block, Keesling, Li and Peterson, t4) 
in 1989, presented a fast and efficient algorithm for computing the entropy 
of unimodal maps of the interval. In 1992, Block and Keesling (3) extended 
that result to maps with three monotone pieces. Grra  and Boyarsky, (s) in 
1991, developed an algorithm for not necessarily continuous piecewise 
monotone maps of the interval. However, their algorithm is not very 
efficient nor even accurate (cf. Figs. 1 and 2 of [ 8]). In 1993, Newhouse 
and Pignataro t~3) devised two algorithms to compute the entropy. Though 
the rates of convergence are extremely slow and memory usage is 
prohibitively high, it should be noted that these algorithms are intended to 
compute the entropy for not only one-dimensional dynamical systems, but 
for arbitrarily high dimensions. Balmforth, Spiegel and Tresser, t2) in 1994, 
based their algorithm on the class of Markov maps (defined below), for 
which the calculation of entropy is just an eigenvalue calculation of an 
associated matrix, and used this idea to motivate a more general algorithm 
for all piecewise monotone maps of the interval. The original motivation 
for the algorithms described in this paper comes from the following result 
of Misiurewicz and Szlenk. (t2) 

T h e o r e m  1. If f is a piecewise monotone continuous function on 
the unit interval, then h(f)= limn__, oo(l/n) log Vat(f"), where h(f) denotes 
the topological entropy off,  and Var denotes the total variation. 

Given that Var(f  ~) is a value which can be calculated in many cases, 
this formula suggests a possible method for calculating the topological 
entropy of a piecewise monotone map of the interval. Whether or not this 
method is practical depends on two factors. First, it must be possible to 
calculate Var(f  ~) in a way that does not grow too quickly as a function of n. 
The most obvious way of calculating Var ( f  ~) is to find all of the turning 
points of f~ and then calculate the variation on each of these intervals. 
However, the number of turning points grows exponentially with n when- 
ever h(f)> 0, making this a very inefficient way of calculating Vat(f"). 
(This is also the problem with the Gbra-Boyarsky algorithm, (s) which 
requires the calculation of all such turning points.) However, we shall show 
that there is another method for calculating Var( f  ~) such that the amount 
of time required grows only as a polynomial in n, making the calculation 
of Var( f  ~) feasible for n as large as 200 in the examples considered as test 
functions in this and other papers. 

The other reqirement for practicality is that the estimate (l/n) log Var(f  ~) 
should converge rapidly enough to the entropy to be a reasonable estimate 
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for values of n for which Var(f")  can be reasonably calculated. Unfor- 
tunately, as will be shown below, there are trivial examples of piecewise 
monotone functions for which the convergence is as bad as O(l/n), making 
the direct use of this formula impractical. 

However, even though the attempt to use the above formula directly 
is not feasible, there is a modification which shows more promise. It was 
observed that, in many cases, log(Var(f"+l)/Var(f")) converges very 
rapidly to h(f). It is relatively easy to prove that log(Var(f"+l)/Var(f")), if 
it converges at all, must converge to h(f), but there are examples where this 
sequence does not converge, so it cannot be used directly as a method for 
calculating h(f). However, close examination of a class of maps called the 
Markov maps gives a clear picture of why the formula log(Var(f  "+ 1)/ 
Var(f"))  sometimes fails to converge, and suggests a modification which 
always converges to the entropy for Markov maps (usually with error O(c") 
for some c < 1 ), and gives excellent experimental results on those functions 
on which it has been tested. As will be shown below, this method calculates 
a weighted average b , =  Y'.7=o (~-) Var(fi) ,  and then uses log(b,+ l/b,-- 1) as 
the n th-stage approximation to h(f), and in the Markov case can be 
shown to be equivalent to the Power Method for finding eigenvalues of a 
matrix, with shift of origin. 

The remainder of Section 1 will introduce the basic definitions. In 
Section 2, we establish a simple polynomial time algorithm for calculating 
Var(f")  for any piecewise monotone function f Section 3 will cover the 
Markov case in detail, using that case to motivate the eventual algorithm 
which will then be applied to the more general case. Section 4 presents the 
numerical results when this algorithm is applied to a number of examples, 
and Section 5 presents our conclusions. 

Defini t ion.  Let I be a closed interval of real numbers. A con- 
tinuous function f :  I ~  I is called piecewise monotone iff there is a finite 
collection of subintervals of I whose union i s / ,  with f monotone on each 
of these subintervals. (Here, monotone means that inverse images of points 
are connected, so we are not necessarily assuming strict monotonicity.) 
A turning interval is any interval consisting entirely of local extrema which 
is maximal with respect to that property. Clearly, a continuous function 
on I is piecewise monotone iff it has finitely many turning intervals. If a 
turning interval is a singleton, then the resulting point is called a turning 
point. For the remainder of this paper, we shall assume that every turning 
interval is a singleton, and refer to turning points instead. However, this is 
merely a notational convenience, and it is easily seen that the results of this 
paper can be modified in a trivial way to include piecewise monotone maps 
with nontrivial turning intervals. 
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A piecewise monotone map f :  I--. I is called Markov iff there is a finite 
set P_=I which contains all turning points and both endpoints, such that 
f (P )  _~ P. In this case, a P-basic interval is defined to be the closure of any 
component of I\P. If we let G be the set of P-basic intervals, then we define 
a directed graph on G by defining the binary relation ~ by I ~  J iff 
J _  f(I) .  If G = { Ii ..... I,,}, then the incidence matrix of G can be defined as 
A = (ag) where au= 1 if 1~ ~ Ij and aij= 0 otherwise. Then it is well known 
that h(f) is equal to the log of largest positive eigenvalue of the matrix A 
(cf. [5]). 

2. C A L C U L A T I N G  THE T O T A L  V A R I A T I O N  

In this section we show that there is a simple polynomial (in n) time 
algorithm for calulating Var ( f ' )  in the case where f is piecewise monotone. 

If h(f )> 0, then the number of turning points o f f "  grows exponen- 
tially with respect to n. In fact the exponential rate of growth is very 
roughly of: the form a',  where h(f)=log a. Thus, any method which 
requires knowing all of the turning points of f "  is going to require an 
unreasonably large number of calculations. Fortunately, we do not need to 
know this information. The key trick is motivated by the fact that, while 
the set T,,= {x:x is a turning point o f f  ~} grows exponentially, the set 
f"(T,) only grows linearly, that is, f n ( T , ) ~ 0 ~ ' - i  fi(T1), and that to 
calulate Var(f~), we only need to calculate the number of times each com- 
ponent of l\f"(7",) is covered by f ' .  

Def in i t ion .  If P is a finite subset of L and we write P =  
{Po, Pl ..... p '} ,  then we also mean that Po <Pl  < "'" < P ' ,  and that Po and 
p,, are the endpoints o f / ,  unless otherwise stated. If P is a finite set, we 
use IPI to denote the number of elements of P. We say that a triple 
(f, P, Q) is compatible if and only if f :  1 ~  I is piecewise monotone, P and 
Q are finite subsets o f / s u c h  thatf(P)_~ Q, and {f(x): x is a turning point 
of f }  ~ O. If (f, P, Q) is compatible, where P =  {Po, P~,..-, P,,} and Q =  
{ qo, q~ ..... q,,,}, then Af(Q, P) is defined to be the m by n matrix A =  (aij), 
where for each pair (i, j), ao. is the maximum possible number of pairwise 
disjoint intervals J ~  (pj_~, pj) such that f (J)  = (qi-~, qi), i.e., ae. is the 
number of components o f f - l (qe_~ ,  q~) whichare contained in (P j - l ,  Pj)- 
We also define es(Q) to be the vector (c~, c:,..., c,,,), where for each i, c~ is 
the maximum possible number of pairwise disjoint intervals J ~ 1 such that 
f(J)=(q~-l,q~), i.e., c~ is the number of components of f- l(qi_l ,qi) .  
Given P as above, de is defined to be the vector (P~-Po, P2-P~,..., 
P'-Pn-~).  We define 1,, to be the n-dimensional vector, all of whose 
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components are 1, with the subscript suppressed if it is obvious from 
context. 

Proposit ion 1. If (f, P, Q) is a compatible triple, with }PI = n  and 
I QI = m, then cy(Q) = Af( Q, P) 1.. 

Proposit ion 2. If (f, P, Q) is a compatible triple, then V a r ( f ) =  
dQcf(Q), where Var(f)  is the total variation o f f  

Lemma 1. If (f, P, Q) and (g, Q, R) are both compatible triples, then 
(gof P, R) is also a compatible triple, and Agof(R, P) = Ag(R, Q) Af(Q, P). 

Proof. Suppose IPI =P, IQI =q,  and IRI-r.  Let (a 0) represent the 
entries of the matrix Ag(R, Q), and let (a~) represent the entries of 
Af(Q, P). If x is a turning point of g of, then either x is a turning point of 
f or f(x) is a turning point of g, and in either case it is easy to see from 
the definition of a compatible triple that g(f(x))~ R. Thus (g of R, P) is a 
compatible triple. Fix i and j, with 1 ~< i ~< r and 1 ~< j ~<p. Then for each k, 
1 ~k<~q, and for each x~(ri_l,r~), g-l(x) has exactly aik components 
lying in the interval (qk--l, qk), and for each y E(qk_ 1, qk), f - l ( y )  has 
exactly a~q components lying in the interval (pj_ 1, Pj). Thus, for each such x, 
there are exactly aika'kj components C of (Gof)-l(x) such that f ( C ) ~  
(qk-1, qk), from which it easily follows that the /j-entry of Agof(R, P) is 

t zqk= l aikakj. 

Corollary 1. Suppose (f, Po, P t) is a compatible triple, and P.+I 
is inductively defined by P,,+I = P. wf(P.) for n > 1. Then for any m < n, 
(f .-m, Pro, P.) is a compatible triple, and Ay.-=(P., Pro)= Af(P.,  P . - l )  
. . .Af(Pm+l,Pm). 

Corollary 2. Given f, P, as in the previous Corollary, Var ( f " )=  
de Af(P,,, P , -1)" ' "  Ay(P2, P1) Ay(P1, Po) 1. 

The calculation of Var(f") can be made more efficient if one observes 
the following. The matrix Af(P.+I ,  P.) is constructed by noting that the 
row partition of Af(P,, +1, P,,) is the column partition of As(P., P ._  1) and 
the column partition of Af(P,,+I,P,,) is constructed from the set 
P,, wf(P,,). We can also rewrite Var(f") as-dp, cf,,(Pn). The term Cf.(Pn) 
can be calculated so as to be a k by 1 matrix, for some k. Thus by 
Corollary 2, Var(f  "+ 1)=de.+,Af(P,,+ 1, P,,) cf.(P,,). At each iteration we 
perform one matrix multiplication by a vector followed by a dot product. 
In effect, we use the results of the computation for the variation o f f "  to 
compute the variation of f "+  1. 
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3. R E F I N E M E N T S  OF THE M E T H O D  

Given that there is a simple polynomial-time algorithm for calculating 
Var(f"), as described in the previous section, one can then ask if there is 
a reasonable way to convert it into an algorithm for approximating h(f) 
in a reasonable amount of time. A simple example suffices to show that the 
usual formula h(f)= limn.., oo(1/n) log(Var(fn)) converges too slowly to be 
useful, even in some very simple cases. 

For example let I = [ 0, 2 ], and define f :  I ~ I by f ( x ) =  2x when 
x ~ [ 0 ,  1], a n d f ( x ) =  - 2 x + 4  when x ~ [ 1 , 2 ] ,  i.e., the usual "tent map" 
based on the interval [0, 2]. Then it is easy to see that h(f)= log 2 and 
V a r ( f " ) = 2  "+l. Therefore, the error E,, in using (1/n)log(Var(f")) to 
calculate h(f) is E,, = (1/n) log(Var(f"))  - h(f) = (1/n) log(2 "+ 1) _ log 2 = 
(log 2/n), which clearly converges to zero too slowly to be of any practical 
value in a cal~:ulation which requires several significant digits. 

Scaling to the unit interval would not help this problem, for it is easy 
to construct functions on [ 0, 1 ] having a small invariant interval with large 
entropy, and equal to the identity outside that interval. Such a function 
would'have the same problems as above. With a little more work, one can 
find such functions for which the relevant invariant set (which need not be 
an interval) would not be readily apparent, so that the scaling factor 
needed to avoid the above problem would be unknown. 

Note that in the special case that f ( P o ) =  Po, we have that P,, = Po for 
all n, and the matrices Af(P,,+~, P,,) are all the same. Call this matrix A, 
and let P -  Po. Then in this case we get V a r ( f " ) =  deA"l for all n, and the 
algorithm becomes virtually identical to the Power Method, one of the typi- 
cal methods for calculating the dominant eigenvalue of the matrix A. If 
each point of P~ is eventually periodic, then we have that P,, = P~r for all 
n greater than some fixed N, and we could assume that Po = P~v, since the 
result of the algorithm would be the same from the Nth step on. Thus, it 
is useful to see what happens to the convergence of these extimates in that 
case. 

If the usual power method were used to find the dominant eigenvalue 
of the matrix A, then a typical procedure might be to start with the vector 
% = 1 ,  and recursively define v.=lv.I and v , ,+ l=(1 /v , )Av , .  Thus, in 
the discussion which is given below, it should be kept in mind that, in the 
Markov case, the method'  being used here-is equivalent to using the 
standard power method for calculating eigenvalues, and that further details 
on the rate of convergence can be obtained from standard references on the 
subject (cf. 16] or 1714-1, for example). In many cases (the exceptions to 
which are discussed below) it is expected that the numbers v, will converge 
to the dominant eigenvalue 2. Since h(f)= log 2 in this case, it is easily 
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seen that this would be similar to using log(Var(f"+l) /Var(f"))  rather 
than (1/n)log(Var(f")) as an estimate for h(f) .  Now, the sequence 
log(Var(f"+ t)/Var(f")) need not converge (as examples below will show), 
but if it does, it must converge to h(f) ,  an immediate consequence of the 
following well known fact. 

Proposition 3. Let <c,> be a sequence of positive real numbers. If 
the sequence <c,,+l/c,,> converges, then so does the sequence <(c,)l/">, 
and to the same limit. 

Outline of  Proof. If L = l im,  ~ ~o(c, + t/c,), and K < L < M, then 
there are positive constants a and b such that aK" < c, < bM" for all n, and 
therefore a~/"K < (c,) ~/" < b l/"M for all n. | 

The practical advantage of using log(Var(f"+~)/Var(f")) to estimate 
h(f )  is that when it converges, it tends to converge to its limit much more 
rapidly than ( 1/n) log(Vat(f")). 

Let us first consider the case where the matrix A is diagonalizable. If 
we let 21, ,~2,.--, ,TI.p be the eigenvalues of A, with 21 the dominant positive 
eigenvalue, then we get 

n (*) Var(f") = el 27 + c22~ + .-. + cj,2p, 

where the c~'s are constants, and el ~-0. Thus, if C is any positive real num- 
ber which is at least as large as the absolute values of all of the eigenvalues 
22, 23,..., 2p, then it easy to see that there is a positive constant a such that 
[Var(f "+ l ) / V a r ( f " ) -  21] <a(C/21)". Thus, if all of the other eigenvalues 
have absolute value strictly less than 21, then C < 21, and it is easy to see 
that the estimate log(Var(f  "+ l)/Var(f")) converges exponentially to h(f).  

Now, suppose that 2 2 -  - 2 1 ,  with all other eigenvalues having smaller 
absolute value. (A simple example where this occurs is the function f on the 
interval [ 0, 3 ] defined by f(0)  = f (2)  = 2, f (  1 ) = 3, and f(3)  = 0, with f 
piecewise linear in between.) Then the dominant terms of Var(f")  will be 
of the form C1,~,7-1" C2,~,~, with Ic21 < [eli. In this case, Var ( f "+ l ) /Var ( f  ") 
does not converge. However, there is still a well-known trick (called "shift- 
of-origin") for dealing with this situation. First, we note that the matix A 
has no negative entries, and therefore p(A) = max{ I,ll: ,l is an eigenvalue of 
A} is itself an eigenvalue of A (cf. [9],  Theorem 8.3.1, for example). As is 
well known, the eigenvalues of the matrix A + I are { 2 + 1:2 is an eigen- 
value of A}. Now, if 2~ is a ~ positive real number, and all other eigenvalues 
of A have absolute value less than or equal to 2~ (which is always the case 
in the matrices considered here), then the eigenvalues of A + I other than 
21 + 1 will all have absolute value strictly less than 21 + 1. Thus, instead of 
using the incidence matrix A of the Markov Graph off,  we use the matrix 
A + I instead. Its dominant eigenvalue will be approached exponentially by 

822/89/5-6-9 
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the algorithm, after which we can simply subtract 1 to get the original 
desired eigenvalue. In fact, the standard shift-of-origin trick for finding 
eigenvalues of a matrix uses A + t I for some constant t, and it is possible 
that an appropriately clever choice of t will increase the rate of con- 
vergence. For the purposes of the algorithm given here, we have used t = 1. 

Of course, for the Markov case, the entire discussion above is just part 
of the standard bag of tricks for calculating eigenvalues. What we now 
want to ask is: What about the case where the piecewise monotone func- 
tion is not Markov? In that case, there is a natural way of taking the 
matrix A + I and generalizing it to the matrices Af(Q, P). The matrix 
A,(Q, P) is well defined for any partitions P and Q such that f(P)c_ Q, 
where we let I be the identity function on the interval. Thus, even though 
the proof of convergence which was discussed above does not go through 
in this case, there is still an obvious way to adjust the algorithm to take 
advantage of this idea. Thus, the suggested modification of the algorithm 
to deal with this case is as follows: 

1. For each compatible triple (f, P, Q), let By( Q, P) = Af( Q, P) + 
A,(Q, P). 

2. Do the above algorithm, using Bf(P.+~,P,) instead of 
Af(P,+ 1, P.), producing a number V. = denBf(P., P , _  1)"" 
Bf(P 2, P~) Bf(P~, Po) 1. 

3. Let log( II.+ l / V . -  l) be the corresponding n th-stage approxima- 
tion of the entropy h(f). 

Definit ion.  We let the Basic Algorithm refer to the procedure 
which uses log(Var(f"+l)/Var(f")) as the nth-stage approximation for 
h(f),  and the Revised Algorithm refers to the use of log( V.+ l / l / ' . -  1) as 
the n th-stage approximation. 

As already discussed above, there are Markov functions for which the 
Basic Algorithm fails to converge to h(f), but the Revised Algorithm does 
converge to h(f). Although we have been unable to prove that the Revised 
Algorithm converges in all cases, we can show that it converges whenever 
the Basic Algorithm does. 

Lemma 2. Let V, be as above in the description of the Revised 
Algorithm. Then V, = Y'.~o (~) Var(f~) �9 

Proof. A simple proof by induction, very similar to the proof of the 
Binomial Theorem. 

I .emma 3. Suppose that ( a . )  is a sequence of positive real num- 
bers such that lim,_, oo a.  = L > 0, and lim._, oo(a, + 1/a,)" = 1. For each 
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~ ~ Then lim~ (b,,+ 1/b,,) exists and is positive integer n, let bn = Y'.i=o (i) a v -. oo 
equal to L + 1. 

n Proof. Let e > 0 be arbitrary. We use the convention that ( , + 1 ) =  
( n )  0, and recall the identity (n+t n n - = i ) = ( i ) + ( i - l ) .  Since an+n+~/a~= 
(an+ 1~an) n an+l,  the hypotheses of the lemma imply that there is a positive 

"+~/a~-  L < e/2 whenever n >1 N. Fix such an N. For integer N such that a n + 
each n, let p(n) Y'.~-o (i) n+ = n (an + ~/a'~ -- L), and observe that p(n) is a polyno- 
mial in n with positive coefficients. Since L > 0 and all an's are positive, 
there is an r / > 0  such that an>~r/ for all n, and thus bn>~ ~7-0  (~)r/ i= 
( 1 + r/)n for all n. Let M > N be a positive integer such that p(n)/( 1 + r/)n < 
e/2 whenever n f> M. Then for any n >I M, we have 

b n + l  

b,, 
1 

~ - ( L +  l) =ff~ ( b ~ + ~ -  (L + 1)b~) 

1 ( n ~ ( n + l )  i 

=b-:~ i-o i a i - ( L  + 1 ) ~ o  a 
i - -  

i n i 
= m  ai  + a 

bn i-o i -o i -  1 i 

- L  a i -  a 
i =  i = O  

1 i +  1 - L  a 
- -  bn ai+ 

i - -  - -1 i - -  

_1_ 
- b ~  \ i Jk  a'i i i--O 

i / \  i - - O  

~-N+, k i / \  a'~ - L  a~ 

i - - N + l  

p(n) 
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Corollary 3. Let f be a piecewise monotone map of the interval I 
such that for some nontrivial subinterval J c / ,  J = f(J).  If the Basic Algo- 
rithm converges, then so does the Revised Algorithm. 

Proof. Let a,,=(Var(f")) 1/" for each n. Then, since Var(f")  is at 
least the length of J, lim,, .., oo a,, = L i> 1, where L = exp(h(f)). Furthermore, 
since the Basic Algorithm converges, we also know that lim,_, oo(Var(f "+ ~)/ 
V a r ( f " ) ) = L ,  and thus lim,,_.oo(a,,+~/a,,)"=lim,,_.oo(1/a,,+~)(Var(f"+~)/ 
Var(f")) = ( l / L ) L  = 1. Thus, all of the hypotheses of Lemma 3 hold, and 
lim,,__.oo(b,,+l/b,)=L+ 1, and we are done, since log(b,,+l/b,,-1) is 
exactly the n th term estimate for the entropy in the revised algorithm. II 

We finish this section with a discussion of the case in which the function 
is Markov, and the corresponding incidence matrix is not diagonalizable. 
Consider the following example. Let f "  [ 0, 2] ~ [ 0, 2] be the function 
defined by f (x )  = 2x for x e [ 0, 1 ], and f (x )  = 3 - x for x e [ 1, 2 ]. Let Po = 
{ 0, 1, 2}. Then f(Po)_c P0, and the corresponding incidence matrix A is 
clearly not diagonalizable, with 1 as the only eigenvalue. In this case, it is 
easily calculated that Var(f")  = r /+ 3, and 1 - (Var(f"  § 1)fVar(f,,)) = 
( - 1  )/(n + 3). Thus, even though log(Var(f"+ l)/Var(f"))  converges to the 
entropy, the convergence of the error to zero is no longer exponential. It 
is not difficult to check that the " +  I" trick used above does not change this 
problem. 

In the more general Markov case in which the incidence matrix is not 
diagonalizable, consider the Jordan normal form of the matrix. Then each 
term c~,;t~' in the formula (*) above which has a nontrivial Jordan block 

n d 2 n - - k + l  is replaced by terms of the form c,.2~ +dl(n)27-1+ . . .  + k-~-~ 
where k is the size of the largest Jordan block for 2i, and dj is a polynomial 
of degree j. (This is easily seen by calculating the nth power of a typical 
Jordan block.) 

If the Jordan blocks for the dominant eigenvalue are all trivial, then 
the situation is pretty much the same as for the diagonalizable case, and 
the Revised Algorithm will converge exponentially to the desired value. 

If the dominent eigenvalue has nontrivial Jordan blocks, then it is easy 
to see that the revised algorithm still converges to the entropy in this case, 
but the convergence is no longer exponential, but of the form O(1/n). 

Given that every piecewise monotone map of the interval is arbitrarily 
close to a Markov map with the same number of monotone pieces, we have 
a clear heuristic reason for believing that this altered algorithm will always 
converge to the entropy. Of course, this observation does not constitute a 
proof of convergence of the revised algorithm in all cases, which is still an 
unsolved problem. Nevertheless, the above observations, along with the 
experimental data presented below, present a strong case that the Revised 
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Algorithm provides us with a useful method for calculating the entropy of 
piecewise monotone maps on the interval. 

4. N U M E R I C A L  RESULTS 

We use the Revised Algorithm on the following one-parameter families 
of test functions, which are all maps of the unit interval to itself. Let s. 
indicate the result of the Revised Algortithm after n iterations. Since the 
exact topological entropy as a function of the parameter is known only for 
family (1) below, it is difficult to devise an efficient test for the accuracy of 
the algorithm. We have given the values [s201-s200[ only as one possible 
indicator of the rate of convergence, although it is obvious that small 
values of [s20~- s2001 do not necessarily imply that s200 is close to the actual 
entropy. For two of the families, we have also given the values of [ss~ -Sso]. 
Our choice for the number of iterations given was based upon the limita- 
tions of the computational facilities which we had at hand. 

fAx ,  0 ~ x < 0.5 where 0 ~< A .N< 1. (cf. [ 4 ] . )  
f ( x ) = ~ A - A x ,  0.5<~x~< 1 

2. f ( x )  = Ax(  1 - x) where 3.5 ~< A ~< 4. (cf. [ 4 ].) 

3. f ( x ) = x + A s i n ( 2 z r x )  where 0.55~<A ~<0.7326. (cf. [3] .)  

4. 
x ( x - A / 2 )  z 

f i x ) =  (1 - A / 2 )  2 where 1.3 ~<A ~< 1.5. (cf. [3] .)  

5. f ( x ) = A ( s i n ( 2 z r x ) +  1) where 0.3~<A ~<0.5. (cf. [8].)  

6. f (x )  =0.5(1 + A  sin(4ztx)) where 0~<A ~< 1. 

These functions and the results of the algorithm are illustrated in Figs. 1-13 
below. We use s, to denote the result of the algorithm after the nth iteration. 

1 

0 1 

Fig. 1. The family f(x) = Ax for x ~< 0.5 and A - Ax for 0.5 < x ~< 1 for 0 ~< A ~< 2. 
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In(2). 

! 

4 . 1 0  - ta  

l ~..._ . . . .  

0 2 0 2 
(a) (b) 

Fig. 2. (a) The topological entropy for the family f ( x ) - A x  for x ~<0.5 and A - A x  for 
0.5 < x ~< 1 for 200 iterations and (b) the difference [s2ol- S2oo[. 

0 1 

Fig. 3. The family f ( x )  = Ax( 1 - x) for 3.5 ~< A ~< 4. 

In(2) .0002 

3.5 4.0 3.5 4.0 
(a) (b) 

Fig. 4. (a) The topological entropy for the family f ( x ) -  A x ( 1 - x )  for 200 iterations and 
(b) the difference 1S2oi- S2ool. 

0 1 

Fig. 5. The f a m i l y f ( x ) = x + A s i n ( 2 n x )  for0.55~<A~<0.7326. 
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I~(3), 

0.3 

.0002 

. . . . . . . .  I A^  
0.5 0.3 

(a) 

L_ _ �9 3z  ~ J 

0.5 
(b) 

1029 

Fig. 6. (a) The topological entropy for the family f ( x ) = x + A  sin(2rrx) for 200 iterations 
and (b) the difference ]s2m-S2ool. 

_ , L  

0 1 

Fig. 7. The family f(x) = x ( x -  A/2)2/(1 - A/2) 2 for 1.3 <~ A ~< 1.5. 

In(3), / 
.0002 

1.3 . . . . . . . . . .  i~ 1.3 . . . .  115 
Ca) Cb) 

Fig. 8. (a) The topological entropy for the familyf(x)=x(x-A/2)2/(1 - A / 2 )  2 for 200 itera- 
tions and (b) the difference Is2ol- s2ool. 

1 

0 1 

Fig. 9. The family f(x) = A(sin(2rrx) + 1 ) for 0.3 ~< A ~< 0.5. 
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I.(3). 

f 

0.3 0.5 

.0002 

1 
0.3 0.5 

(b) 

Fig. 10. (a) The topological entropy for the family f i x ) =  A(sin(2rrx)+ 1) for 200 iterations 
and (b) the difference ISzol-S2ool. 

VA 
0 I 

Fig. 11. The family f ( x )  -- �89 + (A/2) sin(4nx) for 0 ~< A ~< 1. 

In(4), .0002 

~ 1 1 
(~) (b) 

Fig. 12. (a) The topological entropy for the family f(x)--�89 for 200 itera- 
tions and (b) the difference IS2ol - S2oo[. 

.002 .002. 

0 3.~ 1 
! 

4.0 

Fig. 13. The difference [sst-Ssol for functions 6. and 2. respectively. Compare with 
Figs. 12.b and 4.b. 



Calculating Topological Entropy 1031 

We present below the results of the results of the Revised Algorithm 
for 50 iterations for Test Functions 1 and 3. 

Though we can't know precisely what the error is for the Revised 
Algorithm, we can consider the value [s ,+~-s , I .  In the following table we 
present the highest such values obtained for the above functions. 

Although the method appears to be an efficient way of calculating 
topological entropy, it must be acknowledged that the evidence for this is 
mainly experimental in the non-Markov case, and that the theoretical 
results needed to accurately assess the method (and its comparison to other 
methods) are still not available. 

5. CONCLUSIONS 

All of the aigorithms under discussion have one important problem in 
common. They are not efficient when computing entropy close to zero (see 
the spikes and plateaus in Figs. 2.b, 4.b, 6.b, 8.b, 10.b and 11 ). This seems 
to be an inherent problem with algorithms intended to compute entropy 
and may be intractable. Since this also occurs for the family of tent maps, 
for which s,, ought to give the exact value for all n, it is clear that the entire 
problem, in this case, is due to roundoff error. In this paper we have not 
addressed the problem of round-off error for the Revised Algorithm. 
However, note that, in Example 1 (cf. Table I), the relative error for 200 
iterations is much greater than that for 50 iterations. 

Of the available algorithms, the Block-Keesling-Li-Peterson method 
(cf. [4]) is still the clear winner for those maps for which the method is 
valid, the unimodal maps. The same is largely true of the Block-Keesling 
method (cf. [ 3 ]) for bimodal maps which are not unimodal, although it is 
not as easily programmed as the unimodal algorithm (which can easily be 
programmed and debugged in a fraction of an hour). 

Table I. The Relative Error for the Functions 
Discussed in the Text 

i i 

F u n c t i o n  Is201 - s2001 Issi - Ssol 

1. 3 . 8 7 0 8 6 2 x  10 -13 - 5 . 1 4 1 7 2 0 x  10 - I s  

2. 1 .529862 x 10 - 4  1.407561 x 10 -3  

3. 1 .689490 x 10 - 4  5 .752724  x 10 - 3  

4. 1.775111 x 10 - 4  1.820075 • 10 - 3  

5. 1 .081606 x 10 - 4  1.044942 x 10 -3  

6. 1.007171 x 10 - 4  1.790196 • 10 - 3  
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Of the algorithms mentioned above which work on piecewise 
monotone functions having more than three monotone pieces, only the 
algorithm of Balmforth, Spiegel and Tresser (cf. [2]),  and the algorithm 
given here, appear to be practical. Both methods are motivated by the well- 
known Markov example, and are essentially equivalent for that case. 
Moreover, the strengths and weaknesses of these two algorithms appear to 
complement each other. 

The Balmforth-Spiegel-Tresser algorithm has the strength that it 
offers calculations which give an upper and lower bound for h(f). How- 
ever, there does not appear to be any reliable method in the Balmforth- 
Spiegel-Tresser algorithm for deciding how fine the partition of the interval 
should be in order to get a certain accuracy. A partition must be decided 
in advance, and then most of the expense of the method is the time needed 
to estimate the eigenvalues of the corresponding matrices. If the choice is 
not accurate enough, then one must start over with a new partition and a 
new eigenvalue calculation. 

In contrast, our method does not give such upper and lower bounds. 
On the other hand, the values s. give a running estimate of the entropy, 
and in order to calculate S,+l, one only needs two of the matrices which 
were used to calculate s, plus a few simple additional steps. Such a running 
estimate is not feasible in the Balmforth-Spiegel-Tresser algorithm without 
a considerable investment in time to calculate the dominant eigenvalues of 
the corresponding matrices at each stage. 

The contrast between these two methods suggests that our method 
might be combined with the Balmforth-Spiegel-Tresser method to get an 
algorithm which is better than either one alone. One possible way of com- 
bining the algorithms is to use our algorithm until IS ,+l -S . I  is less than 
some function of the desired error, and then use the Balmforth-Spiegel- 
Tresser algorithm to get the actual upper and lower bounds for h(f). 

Since the method given here was partially motivated by a method for 
calculating eigenvalues, which was then translated to a setting appropriate 
for entropy, it is useful to ask what other eigenvalue methods might 
profitably be modified in order to get algorithms for calculating entropy. 
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